MMM
YYYY
Single-molecule optoelectronic devices: physical mechanism and beyond
单分子光电器件:物理机制及超越
単一分子オプトエレクトロニクスデバイス:物理的メカニズムとそれ以降
단일 분자 광전자 장치: 물리적 메커니즘 및 그 이상
Dispositivos optoelectrónicos de molécula única: mecanismo físico y más allá
Dispositifs optoélectroniques à une seule molécule : mécanisme physique et au-delà
Одномолекулярные оптоэлектронные устройства: физический механизм и не только
Peihui Li 李佩慧 ¹, Yijian Chen ¹, Boyu Wang 汪博宇 ¹, Mengmeng Li 李萌萌 ¹, Dong Xiang 向东 ¹, Chuancheng Jia 贾传成 ¹, Xuefeng Guo 郭雪峰 ¹ ²
¹ Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
中国 天津 南开大学电子信息与光学工程学院 现代光学研究所 天津市微尺度光学信息技术科学重点实验室 有机新物质创造前沿科学中心 单分子科学中心
² Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
中国 北京 北京大学化学与分子工程学院 分子科学国家实验室 分子动态与稳态结构国家重点实验室
Opto-Electronic Advances, 20 May 2022
Abstract

Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices, but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level.

Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics, it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields, particularly the optical field. This review mainly introduces the optoelectronic effects that are involved in single-molecule devices, including photoisomerization switching, photoconductance, plasmon-induced excitation, photovoltaic effect, and electroluminescence.

We also summarize the optoelectronic mechanisms of single-molecule devices, with particular emphasis on the photoisomerization, photoexcitation, and photo-assisted tunneling processes. Finally, we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes
Tracing the formation of oxygen vacancies at the conductive LaAlO₃/SrTiO₃ interface via photoemission
Photonic spin Hall effect: fundamentals and emergent applications
Research on Visual Detection Algorithm for Groove Feature Sizes by Means of Structured Light Projection
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River
Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications
Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film
Research status and prospect of wind-vehicle-bridge coupling vibration system
The reservoir learning power across quantum many-body localization transition
A small microring array that performs large complex-valued matrix-vector multiplication
Prognostic role of plasma levels of γ-glutamyl transpeptidase in patients with advanced gastric cancer treated with anti-PD-1 immunotherapy



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper