MMM
YYYY
Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids
时间分辨研究揭示了液体中一纳秒激光烧蚀无与伦比的高效率的起源
時間分解研究により、液体中での1ナノ秒のレーザーアブレーションの比類のない高効率の起源が明らかになりました
시간 분해 연구를 통해 액체에서 1나노초 레이저 절제의 비할 데 없는 고효율의 기원이 밝혀졌습니다
Los estudios de resolución temporal revelan el origen de la alta eficiencia sin precedentes de la ablación láser de un nanosegundo en líquidos
Des études résolues dans le temps révèlent l'origine de la haute efficacité inégalée de l'ablation laser d'une nanoseconde dans les liquides
Исследования с временным разрешением раскрывают происхождение беспрецедентно высокой эффективности однонаносекундной лазерной абляции в жидкостях
Sarah Dittrich ¹, Maximilian Spellauge ¹ ², Stephan Barcikowski ¹, Heinz P. Huber ², Bilal Gökce ¹ ³
¹ Technical Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141 Essen, Germany
² Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstr. 34, 80335 Munich, Germany
³ Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
Opto-Electronic Advances, 22 June 2022
Abstract

Laser ablation in liquid is a scalable nanoparticle production method with applications in areas like catalysis and biomedicine. Due to laser-liquid interactions, different energy dissipation channels such as absorption by the liquid and scattering at the ablation plume and cavitation bubble lead to reduced laser energy available for nanoparticle production.

Ultrashort pulse durations cause unwanted nonlinear effects in the liquid, and for ns pulses, intra-pulse energy deposition attenuation effects are to be expected. However, intermediate pulse durations ranging from hundreds of picoseconds up to one nanosecond have rarely been studied in particular in single-pulse settings. In this study, we explore the pico- to nanosecond pulse duration regimes to find the pulse duration with the highest ablation efficiency.

We find that pulse durations around 1–2 ns enable the most efficient laser ablation in liquid since the laser beam shielding by the ablation plume and cavitation bubble sets in only at longer pulse durations. Furthermore, pump-probe microscopy imaging reveals that the plume dynamics in liquids start to differ from plume dynamics in air at about 2 ns after pulse impact.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Integrated photonic polarizers with 2D reduced graphene oxide
Tip-enhanced Raman scattering of glucose molecules
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Reconfigurable origami chiral response for holographic imaging and information encryption
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
Design, setup, and facilitation of the speckle structured illumination endoscopic system
Genetic algorithm assisted meta-atom design for high-performance metasurface optics



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper