MMM
YYYY
Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films
光的矢量自旋轨道霍尔效应及其在偶氮聚合物薄膜中的实验观察
光のベクトルスピン軌道ホール効果及びアゾポリマー薄膜中の実験観察
빛의 벡터 자선 궤도 홀 효과 및 짝질소 중합체 박막에서의 실험 관찰
Efecto Hall de la órbita de giro vectorial de la luz y su observación experimental en películas de polímeros azoicos
Effet Hall orbital de spin vectoriel de la lumière et son observation expérimentale dans des films polymères azoïques
векторный спин - орбитальный эффект Холла света и его экспериментальное наблюдение в пленке азополимеров
Alexey Porfirev ¹, Svetlana Khonina ¹, Andrey Ustinov ¹, Nikolay Ivliev ¹, Ilya Golub ²
¹ Image Processing Systems Institute of RAS—Branch of the FSRC "Crystallography and Photonics" RAS, Samara, 443001; Russia
² School of Advanced Technology, Algonquin College, Ottawa, Ontario K2G 1V8, Canada
Opto-Electronic Science, 20 July 2023
Abstract

Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum (OAM) possessing optical system and is caused by e.g. refractive index gradient/interface between media or focusing of a spatially asymmetrical beam, similar to the electric field breaking the symmetry in spin Hall effect for electrons.

The angular momentum (AM) conservation law in the ensuing asymmetric system dictates redistribution of spin and orbital angular momentum, and is manifested in spin-orbit, orbit-orbit, and orbit-spin conversions and reorganization, i.e. spin-orbit and orbit-orbit interaction. This AM restructuring in turn requires shifts of the barycenter of the electric field of light.

In the present study we show, both analytically and by numerical simulation, how different electric field components are displaced upon tight focusing of an asymmetric light beam having OAM and spin. The relation between field components shifts and the AM components shifts/redistribution is presented too. Moreover, we experimentally demonstrate, for the first time, to the best of our knowledge, the spin-orbit Hall effect of light upon tight focusing in free space.

This is achieved using azopolymers as a media detecting longitudinal orzcomponent of the electrical field of light. These findings elucidate the Hall effect of light and may broaden the spectrum of its applications.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
Three-dimensional integrated optical fiber devices: emergence and applications
Femtosecond laser micro/nano-processing via multiple pulses incubation
Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper