Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template
발광 다이오드는 고온 퇴화 AlN/Sapphire 템플릿의 깊은 자외선 조사로 인간 호흡기 RNA 바이러스를 빠르게 불활성화
La radiación ultravioleta profunda de los diodos emisores de luz en la plantilla ALN / Sapphire recocida a alta temperatura inactiva rápidamente el virus del ARN respiratorio humano
L'irradiation UV profonde de diodes électroluminescentes sur un modèle AlN / Sapphire recuit à haute température inactive rapidement le virus de l'ARN respiratoire humain
Глубокое ультрафиолетовое излучение светодиода на шаблоне Aln / Sapphire для высокотемпературного отжига быстро нейтрализует РНК - вирус дыхательных путей человека
Ke Jiang 蒋科 ¹ ², Simeng Liang 梁斯萌 ³, Xiaojuan Sun 孙晓娟 ¹ ², Jianwei Ben ¹ ², Liang Qu 屈亮 ³, Shanli Zhang ¹ ², Yang Chen 陈洋 ¹ ², Yucheng Zheng 郑雨澄 ³, Ke Lan 蓝柯 ³ ⁴, Dabing Li 黎大兵 ¹ ², Ke Xu 徐可 ³ ⁴
¹ State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
中国 长春 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室
² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学 材料科学与光电工程中心
³ State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
中国 武汉 武汉大学 生命科学学院 病毒学国家重点实验室
⁴ Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, China
中国 武汉 武汉大学 生物安全三级动物实验室 疫苗研究院
Opto-Electronic Advances, 27 September 2023

Efficient and eco-friendly disinfection of air-borne human respiratory RNA viruses is pursued in both public environment and portable usage. The AlGaN-based deep ultraviolet (DUV) light-emission diode (LED) has high practical potentials because of its advantages of variable wavelength, rapid sterilization, environmental protection, and miniaturization. Therefore, whether the emission wavelength has effects on the disinfection as well as whether the device is feasible to sterilize various respiratory RNA viruses under portable conditions is crucial.

Here, we fabricate AlGaN-based DUV LEDs with different wavelength on high-temperature-annealed (HTA) AlN/Sapphire templates and investigate the inactivation effects for several respiratory RNA viruses. The AlN/AlGaN superlattices are employed between the template and upper n-AlGaN to release the strong compressive stress (SCS), improving the crystal quality and interface roughness.

DUV LEDs with the wavelength of 256, 265, and 278 nm, corresponding to the light output power of 6.8, 9.6, and 12.5 mW, are realized, among which the 256 nm-LED shows the most potent inactivation effect in human respiratory RNA viruses, including SARS-CoV-2, influenza A virus (IAV), and human parainfluenza virus (HPIV), at a similar light power density (LPD) of ~0.8 mW/cm2 for 10 s.

These results will contribute to the advanced DUV LED application of disinfecting viruses with high potency and broad spectrum in a portable and eco-friendly use.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
Metasurfaces for near-eye display applications
A review of liquid crystal spatial light modulators: devices and applications
In-fiber photoelectric device based on graphene-coated tilted fiber grating
Solar cell-based hybrid energy harvesters towards sustainability
8-nm narrowband photodetection in diamonds
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films
Encoding physics to learn reaction–diffusion processes
Accurate medium-range global weather forecasting with 3D neural networks
Hybrid bound states in the continuum in terahertz metasurfaces
Deep learning assisted variational Hilbert quantitative phase imaging

Previous Article                                Next Article
Copyright © Hot Paper