MMM
YYYY
Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field
斑点结构照明内窥镜在宽视场和景深下具有增强的分辨率
広い視野と被写界深度で強化された分解能を有するスポット構造照明内視鏡
스펙클 구조 조명 내시경, 넓은 시야와 깊이에서 향상된 해상도
Endoscopio iluminado con estructura manchada con resolución mejorada en campo ancho y profundidad de campo
Endoscope illuminé à structure tachetée avec résolution améliorée à large champ de vision et profondeur de champ
Световой эндоскоп с пятнистой структурой с улучшенным разрешением в широком поле зрения и на глубине обзора
Elizabeth Abraham, Junxiao Zhou, Zhaowei Liu 刘照伟
Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
Opto-Electronic Advances, 20 July 2023
Abstract

Structured illumination microscopy (SIM) is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity. The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.

In this work, we propose and experimentally demonstrate a low cost, easy to implement, novel technique called speckle structured illumination endoscopy (SSIE) to enhance the resolution of a wide field endoscope with large depth of field. Here, speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.

Our approach is insensitive to the 3D morphology of the specimen, or the deformation of illuminations used. It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics. We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic (WLE) system.

The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field, which might be beneficial to the practice of clinical endoscopy.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Integrated photonic polarizers with 2D reduced graphene oxide
Tip-enhanced Raman scattering of glucose molecules
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Reconfigurable origami chiral response for holographic imaging and information encryption
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
Design, setup, and facilitation of the speckle structured illumination endoscopic system
Genetic algorithm assisted meta-atom design for high-performance metasurface optics



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper